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The motion of a spherical particle along a rough bed in a simple shear viscous flow is
studied experimentally for a wide range of parameters, varying the particle size and
density, the fluid viscosity and the shear rate γ . The instantaneous particle velocity is
calculated in the stream, transverse and vertical directions, using a high-speed video
imaging system. It is found that the normalized streamwise mean particle velocity
U/US , where US is the Stokes settling velocity, depends only on the dimensionless
shear rate µγ/(�ρgd), this relationship being independent of the particle Reynolds
number Rep . This result holds for small Rep , which was the case in our experiments
(Rep < 10). The characteristic amplitude and frequency of the velocity fluctuations
are also given and discussed. A model is then proposed for the mean streamwise
velocity, based on ideas of Bagnold (Proc. R. Soc. Lond. A, vol. 332, 1973, p. 473)
and calculations of Goldman et al. (Chem. Engng Sci., vol. 22, 1967b, p. 653) for the
velocity of a particle close to a smooth plane. From this model an equivalent bed
roughness and an effective friction coefficient are deduced.

1. Introduction
The problem of the motion of a particle on a rough bed is of practical interest, such

as in the cleaning of surfaces, filtration, field-flow fractionation, and is also relevant
to the understanding of sediment transport and avalanches. For a particle falling
down an inclined plane, two types of experiments have been reported, differing in the
roughness size and the role of the surrounding fluid. In the first type, results have
been reported on the fall of a particle in the ambient air down an inclined bed of
fixed beads similar to the moving one (Riguidel et al. 1994; Quartier et al. 2000). In
the second, a particle falling on small roughnesses in a viscous fluid has been studied
by Zhao, Galvin & Davis (2002). The case considered here, when the driving force
on the particle is imposed by a shearing flow and the roughness is of the same order
of magnitude as the particle diameter, has received less attention.

The motion of a spherical particle near a smooth wall in a viscous shear flow, as
sketched in figure 1(a), was investigated first by Goldman, Cox & Brenner (1967a, b),
in the limit of zero inertia. These authors obtained the translating and rotating
velocities of the free particle as functions of the shear rate γ , the particle radius
a, and the distance h of the particle from the wall. More details will be discussed
in § 4. Small inertia effects were taken into account by Cherukat & McLaughlin
(1994) who calculated the resulting lift force normal to the wall. King & Leighton
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Figure 1. Sketch of the situations considered: (a) smooth particle near a smooth wall;
(b) rough particle near a smooth wall; (c) smooth particle near a rough wall; (d) smooth
particle near a particle bed.

(1997) and Krishnan & Leighton (1995) obtained the lift force for the limit when the
sphere is in contact with the wall, and used this result to investigate the motion of
a rough heavy sphere rolling on a horizontal smooth plane. In their model, sketched
in figure 1(b), the centre of the sphere is maintained at a distance h from the wall
by a typical roughness (h − a) � a. The calculated particle velocity was found to be
in agreement with their experiments, with reasonable values of the roughness and
friction coefficient.

The case of a smooth particle moving on a rough bed made of loosely packed fixed
particles with diameter (h − a) small compared to a, as sketched in figure 1(c), does
not seem to have been considered until now. However, since the far-field flow differs
from the previous case by a small amount of order γ (h − a), it may be expected that
the particle velocity can be obtained by the model of King & Leighton and Krishnan
& Leighton with accuracy of order (h − a)/a.

The situation considered here is that of a particle moving on a bed of particles of
the same diameter, as sketched in figure 1(d). This situation differs from the previous
smooth case in several aspects: (i) the ‘roughness length’ (h − a) is no longer well-
defined, (ii) the up-and-down motion of the particle induces a mean slip velocity even
if the particle rolls without sliding at the contact point, (iii) the particle moves only if
the shear rate exceeds a threshold shear rate. These features significantly complicate
theoretical analysis, and only a few experimental results are available. Francis (1973)
and Abbot & Francis (1977) report mean particle velocities for turbulent flow, and a
general theoretical framework was proposed by Bagnold (1973), as discussed in § 4;
yet no experimental results available for the case of viscous flow. This paper examines
this case. Experiments are first reported for the motion of a particle over a bed of
fixed particles with the same diameter; then a model is proposed to account for the
mean velocity of a free particle, based on the concepts of equivalent roughness and
effective friction coefficient. The experimental setup is described in § 2, and the results
are given in § 3 for the particle motion: mean velocity and fluctuating motion in the
three directions. A model is proposed in § 4, and the final Section discusses the results.
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ρ µ H ρp d US

Series (kg m−3) (mPa s) (mm) (kgm−3) (mm) (mm s−1) Rep θ Symbol

1 976 113 8 2480 1.62 19.0 2.2 0.46 ◦
2 976 53 8 2480 1.62 40.6 2.8 0.13 �
3 976 22 8 2480 1.62 97.8 8.3 0.066 �
4 976 53 8 1140 1.59 4.26 1.7 0.76 �
5 976 50 9 1280 1.05 3.65 0.39 0.29 �

Table 1. Fluid and bead properties, Stokes settling velocity US , maximum values of the
particle Reynolds number Rep and Shields number θ , and corresponding symbol in figures.

Uw

Uw

R

H

Figure 2. (a) Sketch of the annular channel with mean radius R = 200 mm, channel width
40 mm and channel depth 20 mm. (b) Side view showing the annular ring on which the fixed
particles are glued, and the moving particle. The fluid thickness H was in the range 8–9 mm.

2. Experimental setup
The experiments were carried out in an annular Plexiglas channel of rectangular

cross-section, as shown in figure 2(a), with mean radius of 200 mm, and width and
depth of 40 and 20 mm, respectively. The rough bed consisted of a monolayer of
particles, glued on an annular ring set in the channel as shown in the side view
in figure 2(b). The fluid thickness H , defined as the distance from the top of the
glued particles to the upper plate, was in the range 8 – 9 mm, depending on the
particle diameter (see table 1). Particles were nearly spherical and with nearly uniform
diameter, the size dispersion being about ±7 % of the mean diameter. They were
glued randomly on the ring, a typical bed obtained in such a way being shown in
figure 3, with a packing fraction of 0.77 ± 0.02. Due to the small dispersion of particle
size and the two-dimensional pattern, some crystallized areas could not be avoided.

The rotation of the upper plate, with velocity Uw at the mean radius R, drags the
fluid, which in turn sets into motion the free particle deposited on the rough bed. In
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(a) (b)

Figure 3. (a) Top view of the channel and particle bed; the black circle in the middle of the
channel is the moving particle. (b) Side view of the moving particle on the bed.

the middle half of the channel, the dominant fluid motion is azimuthal, with uniform
shear rate close to

γ =
Uw

H
. (2.1)

Due to centrifugal effects, a secondary flow takes place, directed outwards close to
the moving plate and inwards near the bed, which slowly drags the free particle
towards the inner lateral wall of the channel. This secondary flow and its effect on the
motion of particles have been described in detail in Charru, Mouilleron-Arnould &
Eiff (2004), where the inertial correction of the shear rate (2.1) was given. For the
experiments presented here, the shear Reynolds number

Re =
ρ Uw H

µ
, (2.2)

where ρ and µ are the fluid density and viscosity, was lower than 50 for most
measurements, so that the inertial correction to the shear rate (2.1) was negligible.

The fluid and beads were chosen in order to vary the three main parameters: the
density difference of the particle and fluid, ρp − ρ, the fluid viscosity, µ, and the
particle diameter, d = 2a. The diameter of the moving particle is equal to that of the
bed particles for all experiments. The five different sets of physical properties used
are given in table 1. Series 1, 2 and 3 correspond to glass beads and three different
fluid viscosities, series 4 corresponds to a Nylon bead with lower density, and series 5
to an acetate bead of smaller diameter.† In all series, the fluid is silicon oil. Also
reported in table 1 is the Stokes settling velocity

US =
(ρp − ρ) gd2

18 µ
, (2.3)

as well as the maximum values of the particle Reynolds and Shields numbers, defined
as

Rep =
ρ γ d2

µ
=

d2

H 2
Re, θ =

µ γ

(ρp − ρ) gd
. (2.4)

† Glass beads were from Cultura, Loisirs et Décoration, Portet-sur-Garonne, France. Nylon beads
were from Goodfellow, http://www.goodfellow.com, and acetate beads from Marteau & Lemarie,
http://www.marteau-lemarie.fr.
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It can be seen that the maximum values of the particle Reynolds number are smaller
or slightly larger than one; hence, the effect of fluid inertia on the particle motion, as
well as particle inertia, are expected to be small.

For series 1, the horizontal motion of the particle was recorded from above with
a high-speed camera (250 and 500 frames per second) and a typical field of view
of 30 particle diameters, corresponding to spatial resolution ranging from 33.8 to
46.3 pixelsmm−1. The vertical motion was also observed from the side view for a few
runs. For series 2 to 5, only the horizontal motion of the particle was recorded and
with a low-speed camera (20 to 60 frames per second), with a larger field of view
corresponding to a spatial resolution in the range 11.6 to 12.4 pixels mm−1. The centre
of the moving particle was obtained from the digitized images, using a routine from
the Matlab c© image processing toolbox. To enhance the contrast of the images, the
background was first subtracted. Then the image was converted into a binary image
choosing an appropriate threshold level. The position of the centroid of the particle
was then easily obtained with subpixel accuracy. The same procedure was applied
to the entire image series; hence, the particle position (x, y, z) was obtained as a
function of time, where x, y and z are the streamwise, transverse (directed outwards)
and vertical (directed upwards) coordinates. Attempts have been made to measure
rotational velocities by tracking tiny eccentric bubbles embedded in the particle;
however due to the rotation in the three directions, these measurements had to be
abandoned.

3. Results
3.1. Onset of motion

At rest, the particle typically is in contact with three bed particles, its bottom lying
slightly below the plane tangent to the top of the particle bed. In order to move the
particle out of its gravity potential well, a minimum non-zero shear rate is required,
for which the moment of the hydrodynamic force at the pivoting point, of order
µγd2, balances that of the immersed weight, of order (ρp − ρ)gd3. This threshold
shear rate defines a threshold Shields number θt0 which depends on the height of
the barrier potential to be overcome, i.e. on the initial position of the particle on the
bed. Note that if both the surfaces of the moving and fixed particles were smooth,
the particle touching the bed would not move in finite time; thus some roughness is
needed, as discussed in § 4 in relation to the theoretical model.

The threshold θt0 was found to be in the range 0.02–0.04. For Shields number
slightly above the threshold θt0, the particle was observed to travel a finite distance
and eventually to stop. This stopping is likely to correspond to a fall into a deeper
crevice or to contact with a larger bed particle preventing any further motion. For
a given shear and a given initial position, the distance travelled by the particle was
found to depend on the details of its trajectory, and exhibited large scatter. However,
upon averaging, a mean value L of this distance appeared to be reached after about
ten runs. The variation of this distance with Shields number, normalized with the
particle diameter, is shown in figure 4 in linear and logarithmic scales. The distance
appears to increase with the Shields number, as expected, and diverges for Shields
number close to θt =0.035. A power law was found to fit the data points well, given
by

L

d
=

0.16

(1 − θ/θt )2
. (3.1)
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Figure 4. Mean distance travelled by the moving particle versus Shields number, (a) in linear
scales and (b) in logarithmic scales (series 1). The solid lines correspond to the power law (3.1).

The threshold Shields number for mobile granular beds has received much attention
for a long time and mechanistic models have been proposed, see the review by Buff-
ington & Montgomery (1997). The difference that appears here between the threshold
θt0 for the first motion and that θt for continuous motion can be related to the
phenomenon of ‘bed armouring’ (Chin, Melville & Raudkivi 1994), which leads to a
decrease of the surface density of mobile particles over long times (Charru et al. 2004).

3.2. Trajectories, velocities and velocity distributions

As explained in the previous section, image analysis of all the experiments was
performed for all series. The fundamental measure obtained directly from the images
is the position of the particle as a function of time. With this measure, the trajectories
of the beads can be analysed.

Figure 5 shows typical results of the bead trajectory for three values of the Shields
number. Figure 5(a) shows the results obtained from the top view (x, y positions) and
figure 5(b), shows the trajectories obtained from the side view (x, z positions). The
motion of the bead is in all cases from left to right. In all cases the displacement in
the streamwise direction (x-direction) is much more important than in the other two
directions (y- or z-directions). For low values of the Shields number, for which the
hydrodynamic force is slightly above the onset of motion, the trajectory of the bead
appears to follow the geometry of the bed more closely. Hence, the particle rolls in
nearly persistent contact with the substrate. Clearly, the periodicity observed in the
trajectories for this case is indicative of the length scale of the roughness of the bed.
Note that in figure 5(a) two traces are presented for the same nominal low value
of the Shields number. In those particular experiments the particle passed through
approximately the same position when first tracked (0, 0). It is interesting to observe
that the two experiments show approximately the same trajectory for the first 5 mm
(≈3 d), but then take a different path. As the Shields number increases, the trajectory
of the particle begins to depart from that dictated by the base and a few ‘jumps’
begin to be noticeable. The wavelength of the periodicity of the trajectories increases
and the magnitude of the cross-streamwise displacement (y-direction) decreases. For
higher values of the Shields number, the particle moves mainly in the x-direction and,
as observed in the figure, exhibits longer flights. The inwards drift in the transverse
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Figure 5. Typical particle trajectories from series 1, for three values of the Shields number:
(a) x, y positions for θ = 0.07 (*), 0.19 (+), 0.37 (×); (b) x, z positions for θ = 0.09 (*), 0.19
(+), 0.32 (×). For clarity, the initial point is artificially displaced vertically. Note that the
trajectories for θ = 0.19 in (a) and (b) do not correspond to the same run, and that in (b) the
scale on the vertical axis z is larger than on the horizontal one x.

y-direction is due to the secondary inertial flow discussed in § 2. Correspondingly,
the mean vertical position increases by 0.06 d in the range θ =0.09–0.32. Later in
the paper, the power spectra of the particle motion will show two characteristic time
scales of the motion, a shearing time scale and a settling time scale.

The particle velocity can be obtained from the position–time information obtained
from image analysis. The instantaneous particle velocity was calculated using a central
difference scheme. The x-direction velocity, U (t), and y-direction velocity, V (t), are
shown on the left column of figure 6(a), for the same values of the Shields number as
in figure 5(a). Clearly, the velocity traces are fluctuating in nature, in both directions.
The streamwise velocity of the particle fluctuates around a mean value which increases
with Shields number. Note that for the lowest Shields number (θ = 0.07, upper trace)
there are three points with negative streamwise velocity, which correspond to the
sphere falling backwards into a trough. The transverse velocity also fluctuates around
a slightly negative value corresponding to the inertial radial drift. A characteristic
frequency of fluctuation can be readily discerned from the traces which will be
analysed in § 3.5. Along with the velocity traces, the normalized probability density
functions (PDFs) of the velocities are shown on the right column of figure 6(b).
The PDFs show that the velocity signals have a near-Gaussian distribution for
the cases shown, with a slight skewness towards slower velocities for small Shields
number and towards higher velocities as the Shields number increases. Note that the
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Figure 6. (a) Streamwise velocity U (t) (�) and transverse velocity V (t) (�) corresponding
to the particles trajectories shown in figure 5(a). (b) The corresponding probability dist-
ribution functions and Gaussian curves. From top to bottom, Shields number is θ = 0.07, 0.19,
and 0.37.

Gaussian curves were calculated from the mean and variance of the velocity signals.
Figure 7 shows the velocity signals obtained from the traces shown on figure 5(b),
corresponding to the streamwise and vertical directions. Both components of the
velocity fluctuate around a mean. The vertical velocity component, W (t), fluctuates
around a zero mean for all values of the Shields number. As in the previous case,
changes in the structure of the traces can be readily noticed. At low values of the
Shields number, the velocity fluctuations are a result of the interaction of the particle
with the rough wall; as the strength of the shear increases, the particle may ‘fly’
after moving from a peak of the substrate. The evolution of the velocity with Shields
number is discussed below. It may be noted from a comparison of figures 6 and 7
that the vertical velocity W is strongly correlated to the streamwise one (with a small
delay), whereas the transverse velocity V is much less correlated.

3.3. Mean velocity

The mean value of streamwise velocity, U , was obtained for all the experiments
performed in this investigation. Figure 8 shows the calculated value of U as a
function of the flow shear rate, γ , for all the series. For one of the series, the error
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Figure 7. Streamwise velocity U (t) (�) and vertical velocity W (t) (*) corresponding to the
particles trajectories shown in figure 5(b). Shields number is (a) θ =0.09, (b) θ = 0.19, and
(c) θ = 0.32.

bars are shown. The estimated overall uncertainty of the velocity measurements is
about 5 %. For all cases shown, the mean particle velocity increases with shear rate.
Also, for all cases, the particle moves only beyond a threshold shear rate, as discussed
in § 3.1, which is associated with a minimum non-zero velocity.

It is possible to normalize the measurements to collapse them into a single curve.
Figure 9 shows the mean velocity normalized by the Stokes settling velocity, U/US , as
a function of the dimensionless shear rate, or Shields number θ . Clearly, the velocity
measurements presented in this manner are a function of the Shields number only,
whatever the (small) particle Reynolds number. For θ < 0.17, which corresponds to
U <US , the normalized velocity appears to be a linear function of θ . In the insert
which is a close-up of the measurements at low θ , the onset of particle motion can be
clearly observed, at the threshold Shields number θt = 0.04 with the threshold velocity
Ut/US ≈ 0.1. Above θ = 0.17 the dimensionless velocity is higher than that given by
the linear fit of the low-θ points.



440 F. Charru, E. Larrieu, J.-B. Dupont and R. Zenit

20 40 60 800

10

20

30

40

50

 
γ (s–1)

 U
 (

m
m

 s
–1

)

Figure 8. Streamwise particle velocity versus shear rate for all series (for symbols, see table 1).
For series 1 (�) error bars show the scatter between the lowest and highest measured velocity.
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Figure 9. Normalized particle velocity U/US versus Shields number for all series, and
magnification of the region near the origin. The straight line is a linear fit of the first points.

3.4. Velocity fluctuations

A measure of the fluctuating nature of the particle motion can be obtained from
an analysis of the velocity traces. The standard deviations u′ and v′ of the particle
velocity have been calculated for the streamwise and transverse directions. These are
shown in figure 10 as a function of the Shields number for series 1, 4 and 5. Also, since
a few visualization experiments were performed from a side view, some measurements



Motion of a particle near a rough wall in a viscous shear flow 441

0.2 0.4 0.6 0.80

5

10

15

20

 θ

 u
′, 
v′

, w
′ (

m
m

 s
–1

)

Figure 10. Streamwise velocity fluctuation u′ (solid symbols) and transverse velocity
fluctuation v′ (open markers) versus shear rate for series 1, 4 and 5. The vertical fluctuation
w′ (stars) is shown for series 1 only.

of the vertical velocity standard deviation, w′, are shown. For all cases, the velocity
fluctuations are found to increase with the strength of the imposed shear.

In a manner similar to that for the mean velocity, the measurements appear to
collapse onto a single curve that depends only on the Shields number if they are
normalized with the Stokes velocity, US . The normalized measurements are shown in
figure 11 as a function of the Shields number. Although some scatter is present, the
streamwise velocity fluctuation show a behaviour that can be fitted closely to

u′

US

= 1.32 θ0.6. (3.2)

The transverse velocity fluctuations v′ are found to follow the same power-law
dependence with θ , but have a magnitude which is approximately half of that of the
streamwise fluctuation:

v′ = 1
2
u′. (3.3)

The normalized vertical fluctuations w′/US are not shown in figure 11. Very few
experiments were performed from the side view. Although the normalized vertical
fluctuations do show a power-law behaviour similar to the other two directions,
the scatter is larger and, therefore, a conclusive result cannot be given. In general
the vertical fluctuations are smaller than the streamwise ones but larger than the
transverse ones.

3.5. Particle velocity spectra

To further investigate the fluctuating nature of the particle motion over the rough
substrate, the Fourier transform of the time–velocity traces was obtained, using the
spectrum function from Matlab c©.

Figures 12 and 13 show some typical spectra of the streamwise velocity for three
experimental series. Figure 12 shows the spectra for series 1 for which the high-speed
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Figure 11. Normalized streamwise velocity fluctuation u′ (solid symbols) and transverse
velocity fluctuation v′ (open symbols) versus Shields number, in logarithmic scales. The
lines correspond to equations (3.2) and (3.3).

camera was used, allowing higher time resolution. These correspond to the velocity
traces on figure 6 for the three values of the Shields number. From the figure, it is
clear that the motion contains dominant frequencies, and that these evolve as the
strength of the shear increases. Two characteristic frequencies are also shown on
the plot: the ‘shear frequency’, U/d , (depicted by a star) and the ‘settling frequency’,
US/d (depicted by a circle). Note that for a given experimental series, the shear
frequency increases with the Shields number while the settling frequency is constant.
For the lowest Shields number, for which U < US , the frequency of the highest peak
corresponds to that of the shear frequency. This is an indication that the fluctuating
motion of the particle is a result of the interaction with the wall, as the particle
is dragged by the viscous shear over bed roughness. At the other extreme, for the
highest Shields number shown, for which U >US , the frequency of the peak with
maximum amplitude is closer to the settling frequency. For this case, it can be argued
that the fluctuating motion is now dominated by the particle ‘jumps’ or small flights
that occur after it passes over a peak of the rough substrate. For the intermediate
value of the Shields number, which corresponds to U ≈ US , two peaks with similar
strengths can be discerned. The frequencies corresponding to the peaks are close to
the two dominant frequencies; hence, for this case, the fluctuating motion results both
from the interaction with the wall and the appearance of small flights. It must be
noted that although the appearance of the peaks close to one characteristic frequency
is clear on the figure, it may be less evident for other cases. Longer time series would
be needed in order to obtain a better measure of the peak frequencies, and more
generally better statistics of the fluctuating motion. Such long times series were not
possible to obtain with the present setup.

Figure 13(a) shows the spectra for series 4 and figure 13(b) for series 5, along with
the characteristic frequencies 1.1 U/d and 0.5 US/d . These were found to be closer
to the dominant peaks than the previously shown frequencies U/d and US/d . An
analysis of the entire data set, for all series, indicated that those values gave a closer



Motion of a particle near a rough wall in a viscous shear flow 443

0 20 40 60

1

P
S

D

0 20 40 60

1

P
S

D

20 40 600

1

Frequency (Hz)

P
S

D

(a)

(b)

(c)

Figure 12. Power density spectra of the streamwise velocity corresponding to the particles
trajectories shown in figure 5(a) (series 1, (a) (b) (c) θ = 0.07, 0.19 and 0.37.). The star (*)
corresponds to the shear frequency U/d and the circle (�), to the settling frequency US/d .

correspondence to the peak frequencies. Figure 13 features the same behaviour as
observed for series 1 (figure 12): for small Shields number, the dominant frequency is
quite close to the shear frequency; as the Shields number is increased the dominant
frequency evolves, reaching the settling frequency for the highest Shields numbers
investigated here. Again, although the appearance of the dominant peaks close to
the characteristic frequencies is clear in figure 13, the spectra from other experiments
may not provide a conclusive result, which can attributed to the short duration of
the times series.

Finally, from the analysis of all the spectra obtained, it can be concluded that for
small Shields number, θ < 0.2, the dominant frequency is

n1 ≈ 1.1
U

d
, (3.4)

which indicates that the fluctuating motion is dominated by displacement of the
particle over the bed geometry. For higher Shields number, another frequency arises
in the spectra, which does not depend on the shear rate and scales with the settling
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Figure 13. (a) Power density spectra of the streamwise velocity for three typical runs of
series 4; from top to bottom, θ = 0.13, 0.38 and 0.55. The same for series 5 and θ = 0.12, 0.17
and 0.20. The star (*) corresponds to the shear frequency 1.1 U/d and the circle (�), to the
settling frequency 0.5 US/d .

frequency US/d . This frequency is in the range

0.5 US/d < n2 < US/d, (3.5)

and corresponds to the settling time of particles after small jumps from the top of
the peaks of the rough substrate to the following trough.

4. Theory
The aim of this section is not to develop a new hydrodynamic model, but to propose

a simple interpretation of our experiments within the framework of existing models
developed for closely related situations. Simple and useful ideas to describe the motion
of a particle near a rough wall in a shear flow were proposed by Bagnold (1973),
of which a brief account is given in § 4.1. This model introduces the notions of mean
effective fluid velocity, drag coefficient near a wall and effective friction coefficient.
A second model is then discussed, based on hydrodynamic calculations by Goldman
et al. (1967b) for the related problem of the flow around a sphere near a smooth plane
wall. These calculations and their use by Krishnan & Leighton (1995) in the case of



Motion of a particle near a rough wall in a viscous shear flow 445

a rough particle touching a plane wall are presented in § 4.2. This work is extended
to a rough wall in § 4.3, in order to account for the experiments reported above.

4.1. Bagnold’s model

In his analysis of the fluctuating motion of a particle near a sand bed, Bagnold
(1973) assumes that the mean horizontal force on the particle can be split into a fluid
force corresponding to hydrodynamic interactions and a bed force corresponding to
momentum transfer to the bed through collisions. A particle with mean velocity U

is supposed to experience a mean effective fluid velocity u, so that the hydrodynamic
force can be written as CD3πµd(u − U ) where 3πµd(u − U ) is the Stokes drag force
and CD is an unknown drag coefficient of order one for viscous flow; this coefficient
takes into account fluid inertia but also the vicinity of the wall and unsteadiness
effects. The bed force can be written as a friction Coulomb force µf m′g where
m′g = (ρp − ρ)gπd3/6 is the immersed weight of the particle and µf is an ‘effective’
friction coefficient. This coefficient is expected to be different from the ‘microscopic’
friction coefficient at the contact point between the particle and the rough bed, since
it accounts for the additional resistance due to the non-zero angle due to large
roughnesses at contact. Then the equilibrium condition gives

U

US

= 18 ueff θ − µf

CD

(4.1)

where US is the Stokes velocity (2.3), and ueff = u/(γ d) is a dimensionless effective
fluid velocity. From the experiments reported above, the values of ueff and µf /CD

can be determined from a linear fit of the data points in figure 9 near the threshold,
giving

ueff0 = 0.37,
µf 0

CD0

= 0.16, (4.2)

where the subscript ‘0’ refers to the linear fit. In order to determine µf 0 and CD0,
and not just their ratio, another experiment is needed; Bagnold proposed using the
friction coefficient he found in his experiments on the shearing of suspensions of
spheres in a Couette flow (Bagnold 1954), which is µf 0 = 0.75 for viscous flow. Hence
the drag coefficient CD0 = 4.7.

Finally, of the three coefficients involved in Bagnold’s model, the effective velocity
ueff but the ratio µf /CD can be determined by direct velocity measurements and
the friction coefficient µf has to be determined from a quite different experiment. It
must be noted here that the validity of results on the shear properties of suspensions
reported by Bagnold (1954) has recently been shown to be questionable (Hunt et al.
2002), and that a general theory for the friction coefficient is still an open problem
for granular flows, see e.g. Midi (2004). Moreover the fact that only the ratio µf /CD

is directly measurable may signify that the decomposition between a fluid force and
a bed force is questionable. An improved model is proposed below.

4.2. Particle on a smooth plane

As mentioned in the Introduction, the problem of the steady motion of a sphere near
a plane wall, as sketched in figure 1(a), was solved by Goldman et al. (1967b) in the
creeping flow limit. Since the Stokes equations and boundary conditions are linear,
the motion of a sphere, with radius a and at distance h from the wall, may be solved
separately in terms of three superposable contributions:
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(i) a translational motion with velocity U in a fluid at rest far from the wall,
corresponding to the hydrodynamic force and torque on the sphere

Ft = 6πµaU F ∗
t , Tt = 8πµa2U T ∗

t , (4.3)

where the dimensionless force F ∗
t and torque T ∗

t only depend on the dimensionless
distance h/a;

(ii) a rotational motion with angular velocity Ω in a fluid at rest far from the wall,
corresponding to the hydrodynamic force and torque on the sphere

Fr = 6πµa2Ω F ∗
r , Tr = 8πµa3Ω T ∗

r (4.4)

(clockwise torques and angular velocities are positive, as in previous papers);
(iii) a shear flow γ z past a fixed sphere, inducing the hydrodynamic force and

torque

Fs = 6πµa(γ h) F ∗
s , Ts = 4πµa3γ T ∗

s . (4.5)

The starred dimensionless forces and torques appearing in the above equations only
depend on the dimensionless distance h/a. Explicit expressions for these are given by
Goldman et al. (1967a, b) in the two limits of a sphere far from the wall (h 
 a) and
very close to the wall (h − a � a), see the following section. From the equilibrium
conditions (zero net force and torque) the translational velocity U/(γ a) and rotational
velocity Ω/ 1

2
γ of the free sphere are obtained as functions of the distance h/a.

Small inertia effects result in a lift force normal to the wall. This lift force was
calculated by Cherukat & McLaughlin (1994) for a sphere translating and rotating
close to the wall, and the limit of a sphere in contact with the wall was given by
Krishnan & Leighton (1995) and King & Leighton (1997). In the latter two studies,
these results were used to investigate the motion of a heavy rough sphere rolling on
a smooth plane (figure 1b), whose centre is maintained at a distance h > a from the
wall by a typical roughness h − a (this roughness is needed to resolve the particle
motion because of the logarithmic singularity at the contact point for a smooth
sphere). In addition to the hydrodynamic forces and torques (4.3)–(4.5), the problem
now involves a contact force with tangential component Fc and normal component
N . This normal component balances the sum of the immersed weight m′g and the
hydrodynamic lift force FL. The equilibrium conditions become

N − m′g + FL = 0, (4.6a)

Ft + Fr + Fs − Fc = 0, (4.6b)

Tt + Tr + Ts + a Fc = 0. (4.6c)

Introducing a Coulomb friction force with friction coefficient µf , Krishnan &
Leighton and King & Leighton considered the following three cases, corresponding
to increasing shear rate: (i) rolling without sliding when Fc < µf N , (ii) rolling and
sliding when Fc = µf N , and (iii) takeoff of the particle when the lift force overcomes
the immersed weight. They calculated the particle velocity for the three regimes and
found the predictions in agreement with their experiments.

4.3. Particle on a rough bed

Consider now a smooth particle moving on a rough bed made of loosely packed fixed
particles, with diameter h − a small compared to a, as sketched in figure 1(c). Because
of the fixed small particles, the fluid velocity far from the bed is now γ (z + ε), where
z = 0 now corresponds to the plane tangent to the top of the small particles, and ε is
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an unknown length of order h − a. It may be expected that, as long as (h − a) � a,
the particle velocity is still given by the equilibrium equations (4.6), with accuracy of
order (h − a)/a.

In our experiments, the bed particles are identical to the moving particle as sketched
in figure 1(d). In addition to the problem of the unknown length ε entering the far-
field fluid velocity, the modelling must address the following features mentioned
in the introduction: (i) the undefined ‘roughness length’ (h − a), (ii) the mean slip
velocity (U − Ωa), and the threshold shear rate (corresponding to the threshold
Shields number θt = 0.04).

The problem for the mean motion of the particle may be solved by considering
that the hydrodynamic forces in (4.6) now are mean forces whose dependence on the
mean velocities is still given by the expressions found by Goldman et al. (1967b),
the distance h now being an unknown mean distance from the bed to be determined
from the experiments. Hydrodynamic forces associated with unsteadiness and inertia
are ignored here. Although the correction due to unsteadiness could be estimated
from expressions given by Happel & Brenner (1965) for a smooth plane, this has
not be attempted here. Ignoring the inertial lift force is consistent with the fact that
the dimensionless mean velocities shown in figure 9 collapse onto the same curve,
whatever the (small) particle Reynolds number. In addition, it is also consistent with
the fact that, from Krishnan & Leighton (1995), takeoff would occur for Shields
numbers such that θ Rep = 5, much higher than those investigated here.

The time-averaged momentum transfer through contacts with the bed, which may
involve sliding and non-sliding stages at the contact point, is expected to reduce
to a contact force with normal component N and tangential component Fc. As in
Bagnold’s model, these components are assumed to follow the Coulomb relation
Fc =µf N where µf is an effective friction coefficient, different from the microscopic
friction coefficient. From a formal point of view, this coefficient arises from the time-
averaging of the nonlinear conditions at the contact point (a succession of sliding and
non-sliding stages). Note that the distinction between sliding and non-sliding stages
is lost in the averaging procedure. Setting the equality Fc = µf N also accounts for the
fact that particle motion requires the hydrodynamic force to be greater than some
non-zero Fc, i.e. accounts for the existence of the threshold shear rate.

With these assumptions, the equilibrium conditions (4.6) together with equations
(4.3)–(4.5) yields

U F ∗
t + aΩF ∗

r + γ hF ∗
s − µf US = 0, (4.7)

U T ∗
t + aΩT ∗

r + 1
2
γ aT ∗

s + 3
4
µf US = 0, (4.8)

where US is the Stokes velocity (2.3). On solving these equations, the particle velocity
is found to have the same form as (4.1) with the dimensionless effective fluid velocity
ueff = u/(γ d) and drag coefficient CD given by

ueff =
1

2

(h/a)F ∗
s T ∗

r − 1
2
F ∗

r T ∗
s

F ∗
r T ∗

t − F ∗
t T ∗

r

, (4.9a)

1

CD

=
T ∗

r + 3
4
F ∗

r

F ∗
r T ∗

t − F ∗
t T ∗

r

. (4.9b)
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Then, using the following expressions for the dimensionless forces and torques, valid
for h/a 
 1 (Goldman et al. 1967a):

F ∗
t = −

[
1 − 9

16

a

h

]−1

, T ∗
t =

3

32

(
a

h

)4

, (4.10a)

F ∗
r =

1

8

(a

h

)4

, T ∗
r = −

[
1 +

5

16

(a

h

)4
]
, (4.10b)

F ∗
s = 1 +

9

16

a

h
, T ∗

s = 1 − 3

16

(
a

h

)3

, (4.10c)

the distance h0/a corresponding to the experimental effective fluid velocity ueff0 (4.2)
can be found from (4.9a), hence the value of CD0 from (4.9b), and the friction
coefficient from (4.2). These are found to be

h0

a
= 1.03, CD0 = 2.4, µf 0 = 0.38. (4.11)

These values are reasonable, with friction coefficient being half that in Bagnold’s
model. Note that h0/a is not large, and consequently the above approximate
expressions for the dimensionless forces and torques would not be entirely applicable.
However, from table 2 in Goldman et al. (1967b), comparing the exact and
approximate values of the velocity U/γ a for given h/a shows that the relative
difference is only 11 % for a distance as small as h/a =1.04. Alternatively, approximate
expressions for small (h − a)/a could also be used, as given by Goldman et al. (1967b)
and corrected by Williams, Koch & Giddings (1992), or linear interpolations between
the exact values given by Goldman et al. (1967b) and Chaoui & Feuillebois (2003).
These expressions give values for h0/a and µf 0 which are about 3% higher than those
given by (4.11), as discussed in the Appendix; this difference of 3% is about the same
as the uncertainty in h0/a implied by an experimental uncertainty of 5% in ueff and
CD .

From equations (4.7)–(4.8), the rotation velocity Ω can also be obtained. It is found
that, with the values of h0/a and µf 0 given by (4.11), Ω is slightly larger than U/a

close to threshold, corresponding to a negative slip velocity U − Ωa†, and quickly
decreases to an asymptotic value close to 0.5 U/a. However, since rotation velocities
were not measured, no comparison is possible.

As seen in figure 9, the straight line corresponding to h0/a = 1.03 and constant
friction coefficient µf 0 = 0.38 fits the data points only for θ < 0.17, corresponding to
U < US . Beyond this value, the above model has to be refined. Two ways may be
envisaged, as follows. The first way consists of considering that as the shear rate is
increased, the observed increase of the velocity fluctuations corresponds to increasingly
stronger collisions of the particle with the bed. Then, the momentum transfer rate
µf 0m

′g corresponding to the constant friction coefficient µf 0 has to be corrected
by that due to the collisions. Assuming that the characteristic streamwise velocity

† It may be noted that for a particle on a smooth plane, a resisting (negative) contact force is
necessarily associated with a positive sliding velocity. However, for the rough plane considered here,
the distinction between sliding and non-sliding motion is lost when the mean motion of the particle
is considered, as explained at the beginning of the section. The coexistence of a resisting contact
force and a negative mean velocity can be seen in the simple two-dimensional example of a particle
rolling over a bumpy plane of identical touching cylinders: without sliding at the contact point, the
ratio U/Ωa is 3/π, leading to the negative effective slip velocity (1 − π/3)U .
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fluctuation, u′, corresponds to collisions with the bed, with characteristic frequency
n, the additional momentum transfer per unit time is m n u′. However, this additional
momentum transfer due to collisions increases the total momentum transfer, so that
the resulting curve U/US = f (θ) would be below the straight line (4.1), contrary to
the observations. In fact, the correction of the momentum transfer through collisions
has to be abandonned for another reason: the striking experimental result that all
data points in figure 9 fall onto a single curve U/US = f (θ), whatever the particle
Reynolds number, indicates that inertia effects are not important for both the fluid
and the particle. Thus introducing particle inertia in the modelling of the momentum
transfer to the bed would be inconsistent.

The second way of improving the model is based on the observation that as the
Shields number is increased, the particle loses contact with the bed, on the lee-side
of the bed particles at first, and then experiences small jumps with a rise of its
mean vertical position. Accordingly, the distance h/a given by (4.11) is no longer
constant. For small Shields number, a linear increase of this distance with θ − θt can
be assumed:

h

a
=

h0

a
(1 + c(θ − θt )) (4.12)

where c is a parameter to be determined from the experiments. Using (4.10) for the
dimensionless forces and torques, the linearized effective fluid velocity (4.9a) and drag
coefficient (4.9b) are found to be

ueff = ueff0 (1 + 1.77 c(θ − θt )) , (4.13a)

CD = CD0 (1 − 1.41 c(θ − θt )) . (4.13b)

As expected, increasing the shear stress increases the effective fluid velocity and
decreases the drag coefficient.

The variation of the friction coefficient can be obtained by comparing the time
the particle spends in contact with the bed and the characteristic duration of the
velocity fluctuations, which is the sum of the contact time and the flying time. During
contact the particle moves over a distance of order d so that the contact time can
be estimated as d/U . The characteristic duration of the velocity fluctuations was
found from the experiments to be approximately d/US for θ > 0.17, corresponding
to U > US . Thus, the fraction of time the particle spends in contact with the bed
decreases proportionally to US/U , and the friction coefficient is reduced in the same
proportion. Thus, when the particle flies, i.e. for θ > 0.17 or U >US , the friction
coefficient becomes

µf = µf 0

US

U
=

µf 0

18 ueff0θ − µf 0/CD0

. (4.14)

Note that the above linearized laws for ueff, CD and µf have the advantage
of introducing only one fitting parameter c. Inserting these laws into the velocity
equation (4.1), the coefficient c = 0.4 is found to fit the experimental points over the
whole Shields number range, as shown in figure 14. In this figure curve (b) corresponds
to constant µf 0 = 0.38, with distance h/a increasing from 1.03 to 1.35 in the range
θ =0.04 − 0.8. Thus, a relatively small increase of h/a (32%) increases the velocity
by a factor two. The velocity ueff0 increases by a factor 1.5 and the drag coefficient is
reduced by a factor 0.57. Curve (c) in figure 14 includes the variation of the friction
coefficient according to (4.14), with the same c = 0.4. It can be seen that, although the
friction coefficient decreases by a factor 5 in the range θ = 0.17–0.8, the effect on the
velocity is rather small.
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Figure 14. Normalized particle velocity U/US versus Shields number for all series. Continuous
lines correspond to the model: straight line (a), equation (4.1) with constant effective distance
h0/a and friction coefficient µf 0; lower curve (b), varying h/a (equation (4.12)); upper curve
(c), varying h/a and µf (equation (4.14)).

To summarize, it appears that the experimental results for the mean velocity can
be accounted for by using the viscous forces calculated by Goldman et al. (1967a)
and a Coulomb friction force for the momentum transfer to the bed. An effective
friction coefficient, µf 0 = 0.38, and an equivalent distance of the particle from the
bed, h0/a = 1.03, have been determined, so that the model fits the data points
close to threshold. This model involves only two parameters, instead of three for
Bagnold’s model, and these two parameters have been determined from the velocity
measurements without the need of other results from a different experiment. Far from
threshold where the linear fit breaks down, allowing a small rise of the particle as the
shear is increased fits the data over the explored Shields number range, although some
discrepancy appears for the highest values of θ . The rise of the particle is associated
with an increase in the effective fluid velocity and a decrease in the drag coefficient.

As a final remark, the problem of the spreading of a collection of particles deposited
on a bed could be investigated with our experiments. The diffusion coefficients in the
x- and y-directions could be determined from the distribution of particle
displacements, as in Samson et al. (1998) for a particle on an inclined plane. It
may be expected that these coefficients scale as the product of the characteristic
velocity fluctuation u′ or v′ and the ‘mean free path’ found here. The study of this
problem is postponed to future work.

5. Summary and discussion
Experiments have been reported on the motion of a single particle on a bed of fixed

particles of the same diameter in a viscous shear flow. Five series of experiments have
been performed with different fluid and particle physical properties: fluid viscosity,
particle density and diameter. It was found that the mean velocities U , when scaled
with the settling velocity US , all collapse on the same curve when plotted against the
Shields number θ , whatever the particle Reynolds number. This collapse corresponds
to the fact that the particle Reynolds number was less that ten, so that fluid inertia
effects – as well as particle inertia effects – were small.
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Velocity fluctuations have been measured in the three directions, featuring Gaussian
distributions. The characteristic velocity fluctuations – root mean square values –
when scaled with the settling velocity, collapse onto the same power law when plotted
versus Shields number. Noticeably, the characteristic transverse fluctuation is half the
streamwise one. Velocity spectra were more difficult to interpret due to the short time
series. However, when the particle velocity is smaller than the settling velocity (Shields
number θ < 0.17), the dominant frequency was found to be 1.1 U/d showing that the
fluctuating motion is dominated by the bed geometry. For higher velocity, another
frequency arises in the spectra, which does not depend on the shear rate and scales
with the settling frequency US/d . This frequency, which is between 0.5 US/d and US/d

corresponds to small flights when the settling time in a trough is larger than the time
spent by the particle above it.

In order to understand the mean streamwise velocity U , the model of Bagnold
(1973) has been used first. Assuming for the friction coefficient µf = 0.75 from
Bagnold (1954), this model gives reasonable values for the effective fluid velocity
ueff = u/(γ d) = 0.37 and the drag coefficient CD =4.7. Then another model has been
proposed, based on results of Goldman et al. (1967b) for the free motion of a sphere
in a viscous shear flow parallel to a smooth plane. This model involves only two
parameters, which were found by fitting the velocity measurements: the effective
distance of the particle from the bed, or equivalent roughness, h0/a = 1.03; and the
friction coefficient, µf 0 = 0.38. Note that this friction coefficient is half that used in
Bagnold’s model. For Shields number higher than 0.15, the measured velocities depart
from the straight line corresponding to constant equivalent roughness and friction
coefficient. An attempt was made to account for the greater velocity based on the
observation that, as the shear is increased, the particle loses contact with the bed
for longer and longer times, which raises its mean vertical position and reduces the
momentum transfer to the bed. Use of the resulting shear-dependent distance h/a

enables the model to fit well the data points, whereas the shear-dependent friction
coefficient µf has little effect.

Our results for the mean streamwise velocity may be compared to those of King &
Leighton (1997) for a rough particle on a smooth plane. The comparison is shown in
figure 15, where the velocity is scaled with γ d . Our data points are shown together with
two theoretical curves presented by King & Leighton (1997) for their experimental
data points. These curves correspond to the model (4.6) with FL = 0, µf = 0.2, and two
values of the roughness: (h − a)/a = 0.013 and 0.026. The horizontal lines for small θ

corresponds to the case of pure rolling, and the curve for higher shear correspond to
the case of rolling and sliding. It can be seen that for small shear, a particle on a rough
bed travels slower than one rolling on a smooth plane, as expected. However, for
higher shear, the particle on the rough bed travels faster, and the velocity difference
increases with the shear (the rolling–sliding transition occurring at the crossing with
our data points is fortuitous since this transition depends on the value of the friction
coefficient). The fact that for high shear the particle on the rough bed travels faster
than over a smooth plane is remarkable. This effect may be associated with the short
flights as the particle loses contact with the bed, and the corresponding rise in its
mean vertical position.
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Figure 15. Same as figure 14 with U/γ d instead of U/US . The curves are data of King &
Leighton (1997).

Appendix. Alternative expressions for the forces and torques (4.10)
Since the distance h/a found from (4.10) is not large, the expressions for the

forces and torques for small distance (h − a)/a given by (Goldman et al. 1967b) and
corrected by (Williams et al. 1992) could be used; these expressions, which involve a
logarithmic dependence on (h − a)/a, give h0/a = 1.056.

The precise interpolation formulae valid for all distances given by Chaoui &
Feuillebois (2003) could also be used. Using the 38 terms given in their table 15, with
5 or 6 figures, one finds h0/a = 1.076.

Another way is simply to interpolate the forces and torques from the exact values
given by Goldman et al. (1967b) for h/a =1.0453 and 1.1276 and by Chaoui &
Feuillebois (2003) for h/a =1.1. One finds h0/a =1.068 and µf 0 = n 0.42.

Since the above values for h0/a and µf 0 are close to those used in (4.11), and the
improved model (with varying h/a) involves values of h/a up to 1.35, and the large
distance expressions (4.10) give better results than the small distance expressions for
h/a larger than 1.08, the values of h0/a and µf 0 given by (4.11) have been used here.
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